2025-09-05 02:43:05
EMMI 的技術基于半導體物理原理,當半導體器件內(nèi)部存在缺陷導致異常電學行為時,會引發(fā)電子 - 空穴對的復合,進而產(chǎn)生光子發(fā)射。設備中的高靈敏度探測器如同敏銳的 “光子**手”,能將這些微弱的光信號捕獲。例如,在制造工藝中,因光刻偏差或蝕刻過度形成的微小短路,傳統(tǒng)檢測手段難以察覺,EMMI 卻能憑借其對光子的探測,將這類潛在問題清晰暴露,助力工程師快速定位,及時調(diào)整工藝參數(shù),避免大量不良品的產(chǎn)生,極大提升了半導體制造的良品率與生產(chǎn)效率。微光顯微鏡可在極低照度下實現(xiàn)高靈敏成像,適用于半導體失效分析。微光顯微鏡批量定制
在微光顯微鏡(EMMI)的操作過程中,對樣品施加適當電壓時,其失效點會由于載流子加速散射或電子-空穴對復合效應而發(fā)射特定波長的光子。這些光子經(jīng)過光學采集與圖像處理后,可形成一張清晰的信號圖,用于反映樣品在供電狀態(tài)下的發(fā)光特征。隨后,通過取消施加在樣品上的電壓,在無電狀態(tài)下采集一張背景圖,用于記錄環(huán)境光和儀器噪聲。將信號圖與背景圖進行疊加和差分處理,可以精確識別并定位發(fā)光點的位置,實現(xiàn)對失效點的高精度定位。為了進一步提升定位精度,通常會結(jié)合多種圖像處理技術進行優(yōu)化。例如,可通過濾波算法有效去除背景噪聲,提高信號圖的信噪比;同時利用邊緣檢測技術,突出發(fā)光點的邊界特征,從而實現(xiàn)更精細的定位與輪廓識別。借助這些方法,EMMI能夠?qū)Π雽w芯片、集成電路及微電子器件的失效點進行精確分析,為故障排查、工藝優(yōu)化和設計改進提供可靠依據(jù),并提升失效分析的效率和準確性。科研用微光顯微鏡方案設計故障類型與位置被快速識別。
偵測不到亮點之情況不會出現(xiàn)亮點之故障:1.亮點位置被擋到或遮蔽的情形(埋入式的接面及大面積金屬線底下的漏電位置);2.歐姆接觸;3.金屬互聯(lián)短路;4.表面反型層;5.硅導電通路等。
亮點被遮蔽之情況:埋入式的接面及大面積金屬線底下的漏電位置,這種情況可采用Backside模式,但是只能探測近紅外波段的發(fā)光,且需要減薄及拋光處理。
測試范圍:故障點定位、尋找近紅外波段發(fā)光點測試內(nèi)容:1.P-N接面漏電;P-N接面崩潰2.飽和區(qū)晶體管的熱電子3.氧化層漏電流產(chǎn)生的光子激發(fā)4.Latchup、GateOxideDefect、JunctionLeakage、HotCarriersEffect、ESD等問題
隨著電子器件結(jié)構的日益復雜化,檢測需求也呈現(xiàn)出多樣化趨勢??蒲袑嶒炇彝枰獙Σ牧稀⑵骷M行深度探索,而工業(yè)生產(chǎn)線則更注重檢測效率與穩(wěn)定性。微光顯微鏡在設計上充分考慮了這兩方面需求,通過模塊化配置實現(xiàn)了多種探測模式的靈活切換。在科研應用中,微光顯微鏡可以結(jié)合多光譜成像、信號增強處理等功能,幫助研究人員深入剖析器件的物理機理。而在工業(yè)領域,它則憑借快速成像與高可靠性,滿足大規(guī)模檢測的生產(chǎn)要求。更重要的是,微光顯微鏡在不同模式下均保持高靈敏度與低噪聲水平,確保了結(jié)果的準確性和可重復性。這種跨場景的兼容性,使其不僅成為高校和研究機構的有效檢測工具,也成為半導體、光電與新能源產(chǎn)業(yè)生產(chǎn)環(huán)節(jié)中的重要設備。微光顯微鏡的適配能力,為科研與工業(yè)之間搭建了高效銜接的橋梁。微光顯微鏡市場格局正在因國產(chǎn)力量而改變。
微光顯微鏡(EmissionMicroscope,EMMI)是一種常用的芯片失效分析手段,可以用于確認芯片的失效位置。其原理是對樣品施加適當電壓,失效點會因加速載流子散射或電子-空穴對的復合而釋放特定波長的光子,這時光子就能被檢測到,從而檢測到漏電位置。Obirch利用激光束在恒定電壓下的器件表面進行掃描,激光束部分能量轉(zhuǎn)化為熱能,如果金屬互聯(lián)線存在缺陷,缺陷處溫度將無法迅速通過金屬線傳導散開,這將導致缺陷處溫度累計升高,并進一步引起金屬線電阻以及電流變化,通過變化區(qū)域與激光束掃描位置的對應,定位缺陷位置。借助微光顯微鏡,研發(fā)團隊能快速實現(xiàn)缺陷閉環(huán)驗證。IC微光顯微鏡備件
對于靜電放電損傷等電缺陷,微光顯微鏡可通過光子發(fā)射準確找到問題。微光顯微鏡批量定制
EMMI 技術自誕生以來,經(jīng)歷了漫長且關鍵的發(fā)展歷程。早期的 EMMI 受限于探測器靈敏度與光學系統(tǒng)分辨率,只能檢測較為明顯的半導體缺陷,應用范圍相對狹窄。隨著科技的飛速進步,新型深制冷型探測器問世,極大降低了噪聲干擾,拓寬了光信號探測范圍;同時,高分辨率顯微物鏡的應用,使 EMMI 能夠捕捉到更微弱、更細微的光信號,實現(xiàn)對納米級缺陷的精細定位。如今,它已廣泛應用于半導體產(chǎn)業(yè)各個環(huán)節(jié),從芯片設計驗證到大規(guī)模生產(chǎn)質(zhì)量管控,成為推動行業(yè)發(fā)展的重要力量。微光顯微鏡批量定制